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The gene ra l i za t ion  of [1] in th is  p a p e r  is s i m i l a r  to the genera l i za t ion  made  in [2] with r e s p e c t  to [3] with-  
out the ene rgy  equation t aken  into account .  Inves t iga t ion  of the o rd inary  di f ferent ia l  equations der ived in the 
l i nea r  approx imat ion  for  the ca se  of heat  t r a n s f e r  of a rota t ing disk into an unbounded rotat ing fluid has  shown 
that  the ra t io  of the th ickness  of the t h e r m a l  boundary l a y e r  to the th ickness  of the hydrodynamica l  one fo r  a 
fixed Prandt l  num be r  depends only on the ra t io  of the angular  veloci t ies  of the fluid and the disk and tends to 
infinity when they a r e  equal.  Thus ro ta t ing  s y s t e m s  provide  an example  of the kind of mot ion  in which different  
phys ica l  m e c h a n i s m s  a re  respons ib le  fo r  the fo rma t ion  of the t he rma l  and hydrodynamica l  boundary l a y e r s .  
Thus the t h e r m a l  l a y e r  is produced as a r e su l t  of the fact  that  the flow of fluid f rom infinity to the disk p r e -  
vents unlimited heat  diffusion, i .e . ,  a l imi t  to diffusion occurs  due to convection.  The hydrodynamica l  l a y e r  
is a l a y e r  of the Ekman  type [4] and is produced on account of a ba lance  of Cor io l i s  and drag  fo rces .  

1. A ha l f - space  filled with a v iscous  i ncompres s ib l e  fluid and bounded by an infinite disk is d i scussed .  
The fluid at an infinite d is tance  f rom the disk has  a t e m p e r a t u r e  T~o and is rotat ing with angu la r  veloci ty  a .  
The disk has  a t e m p e r a t u r e  T O and is rota t ing with angula r  veloci ty  c~a. 

The continuity,  N a v i e r - S t o k e s ,  and ene rgy  equations in a cy l indr ica l  coordinate  s y s t e m  witlh axis coin-  
ciding with the ro ta t ion  axis  and with the axial  s y m m e t r y  of the flow taken into account (we a s s u m e  a fluid den- 
s i ty p = 1) have the f o r m  
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where  v is the k inemat ic  v i scos i ty ,  x is the t h e r m a l  conductivi ty coefficient ,  o v i s  the specif ic  heat  of the fluid 
at constant  volume,  and eij is the de fo rma t ion  ra t e  t ensor ;  v, ~ ,  and c v a r e  a s sumed  to be constant ,  and (uwv) 
a re  the radia l ,  axial ,  and rotat ional  components  of the veloci ty  in the cyl indr ica l  coordinate  s y s t e m  (r z ~0). 

Following [1, 2], we will seek  a solut ion of (1.1) in the fm~m 

w'r  = ~g(~), zv = (v.Q)X/2h(~), u l r  = - -  ( f~12)dhld  ~, 

p = p ( z )  § "~, 

r = ( ,~ .o . ! cv ) (Us(~)  + q(~)) + T:, (1.2) 

z =(v/.O.)l/'~, r =(v!fl)l/'~. 

Then the s y s t e m  (1.1) decomposes  into two equations,  the f i r s t  of which is solved independently of the 
second:  

h# , r ~  u t ~ ~-g v ,  

{ s . . -  ohm. + : - o ( , "  + �88 
q " - -  ~ h q '  = -- (4S -~ 3ah'~) (1.4) 

with the boundary conditions 
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(a= v / n  is the Prandt l  number) .  

h (o) = h' (0) = O, g (0) = a at ~ = O, (1.5)  
h ' - ) -  O, g--)- 1 as ~ - +  oo; 

{; +v (0)----0,  q ( O ) = ~ ( r  o - r w )  at ~ = 0 ,  (1.6)  

O, q ~ O  a~ ~ . .+  

The authors  of [2, 5-7] invest igated Eqs.  (1.3) with the conditions (1.5). If now the solution of the sy s t em 
(1.3) is known, it is poss ib le  to inves t iga te  Eqs.  (1.4) according to [1]. We note that  the heat t r a n s f e r  f rom a 
rotat ing disk into a nonrotat ing fluid has been genera l i zed  in [8] to the ca se  of compre s s ib i l i t y  and a l inear  
t e m p e r a t u r e  dependence of the v iscos i ty .  Nonsteady heat  t r a n s f e r  in the ca se  in which the t e m p e r a t u r e  of the 
disk was var ied  ins tantaneously  has been  d i scussed  in [9]. 

Let  us cons ide r  the ca se  in which the rota t ional  veloci ty of the disk di f fers  l i t t le  f rom the rotat ional  
veloci ty  of the fluid at infinite dis tance f r o m  the disk,  i .e . ,  [ l - a [  << 1. Then as follows f r o m  [4, 6], Eqs.  (1.3) 
a r e  l inear lzed ,  and the i r  solution, which sa t i s f i e s  the boundary conditions (1.5), has the f o r m  

g(~)= i + ( ~ -  t)cos(~)exp(-~), 

h(~) = --(~ --  i)(t - -  sin( ~)exp(-- ~)-- cos( ~)exp(-- D). 

It follows f r o m  this  that  the th ickness  of the hydrodynamical  boundary  l a y e r  does not depend on a and is 
a quantity ~ 1 with r e s p e c t  to the va r i ab le  g, i .e . ,  ~ (p /~) l /2  in rea l  coord ina tes .  

Let  us e s t ima t e  the s ize  of the t h e r m a l  boundary l aye r .  Using the resu l t s  of [1], the solution of the f i r s t  
equation f rom (1.4) sa t i s fy ing  (1.6) can  be wr i t t en  in the  fo rm 

+ + +  + + (1.7) 

where  

( I / = ~=o(w2 .,,9; M ( D = - - o  g " §  exp - - :  
1 x 

= --  2a (~ - -  t) 2 exp [--  2~ -t- ~ (~ -t- cos (~) exp (--  ~))], 

and Yl g)  is some  fundamental  solution of the homogeneous equation 

Y] 
r 3 , o~h~ (1.8) 

+ t .h - 4 ]Yl =0,  

which is obtained f rom the f i r s t  equation of (1.4) by the subst i tut ion y--- S (~)exp - -  hd~ ; f u r t he rmore ,  Yl 

sa t i s f i e s  the condit ion 

< oo. (1.9) 

Having subst i tuted exp res s ions  for  h '  and h into (1.8), we obtain 

Y~ -J- [--  13 ~ -- 21} (3 - -  I})sin (~) exp (--  ~) - -  1} +" exp (--  2~.) (t -I- sin (2~)) -}-21~' cos (~) exp (-- ~)] y~ = O. (1.10) 

We will find the asympto te  of Yl(g) f r o m  (1.10) for  the invest igat ion of the function S g )  at l a rge  g. 

1. Let  a >  1, i .e . ,  fl> O. Let  us denote t=fl~ and dyl /d t  =x; then we obtain f rom (1.10) the s y s t e m  

dy,/dt = x, dx/dt ---- {p(t)y,, (1.11) 

where  

2 ,  ' ' .co  

It is poss ib le  to a sympto t i ca l ly  in tegra te  the s y s t e m  (1.11) by means  of reducing it to the L-diagonal  fo rm [10]. 
Asymptot ic  in tegra t ion  is poss ib le  in the region to -< t < oa, in which cp (t)->k > 0 is valid. Assuming f l - 1 / 1 0  and 
set t ing t o --2fl In (1/fi), we obtain that  the inequality ~ (t)->k > 0 is sa t i s f ied  for  t E[t0~). 
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Let  us  t ake  as  the fundamen ta l  so lu t ion  of (1.11) on [t0~) 

( i )  y t = ( ~ + ? l ) e x p  ] / ~ d u  , x = ( 7 - - ~ l ) e x p \ ~  | / ~ d u ,  (1.12) 

w h e r e  y and ~ s a t i s fy  the  s y s t e m  of i n t e g r a l  equa t ions  

t 

(1 
~1 = .f - 2 1/~-~ du du. {~ n) Bxi, - 

to t~ 

One can check  tha t  the  Yi and x so  d e t e r m i n e d  s a t i s f y  the s y s t e m  (1.11). As has  b e e n  shown in [10], Eqs .  (1.13) 
have  a unique cont inuous  bounded so lu t ion  on [t0~). T h e n  we ob ta in  f r o m  (1.13) 

t 

We note  tha t  y ~ 1 and ~ ~ 0 fo r  any t f r o m  [to ~) as  fl ~ 0. And thus  wi th  accoun t  t a k e n  of the f ac t  tha t  ~ = 1 + 
f(t), w h e r e  if(t)[ < Cl/fl)exp('-t/fl), we obta in  f r o m  (1.12) an  e s t i m a t e  yl(t) f o r  su f f i c ien t ly  s m a l l  fl and t E[t0~o ). 

Now we e s t i m a t e  yl(t)  on the  i n t e r v a l  [0~0). I t  fo l lows f r o m  fl~e boundedness  of y and ~ on item) f o r  fl--- 1 /10 
and f r o m  (1.12) tha t  yl(~0) and y~l(~0) a r e  a l so  bounded and yt(t0) > 0, y~(t0) > 0 f o r  suf f ic ien t ly  smaJ l  ft. T h e n  
we have  f o r  y~ (t) 

io fo 

a (t) = a (to) + yl  (to} (t - to) + J c~  j ,~ (~) a (u) ~ .  (1 .14)  
t u 

Let  us denote  

to l0 

0 0 

F o r  suf f i c ien t ly  s m a l l  fl, 5< 1 is s a t i s f i ed ;  m o r e o v e r ,  6 - - 0  as  fl-~0. Then  we obta in  f r o m  (1.14) 

sup I a (t) - a (to) [ ~ I ~,(t0} I ~ + I y~ {to) I to 
tEtoto] i --  6 " 

Thus  f o r  su f f i c ien t ly  s m a l l  fl the  quant i ty  yl(t)  > 0 and is  bounded on [0to], s ince  yl(r -~ 1 as  fl ~ 0. Due to  th is  
and the a s y m p t o t i c  Eq.  (1.12), condi t ion  (1.9) is  s a t i s f i ed .  

Using (1.12) and the e x p r e s s i o n  f o r  ~ (r we obta in  f r o m  (1.7) the  a s y m p t o t e  of S(~ ) f o r  ~ > ~0, w h e r e  
t0 =t0/fl  = 2 In  (1/fl), 

S(~) = 0(~ ~ exp ( - -  2~)) .  (1.15) 

F r o m  th is  it fo l lows tha t  the  t h i c k n e s s  of the  t h e r m a l  bounda ry  l a y e r  is  ~ 1/2/3, o r  '.,(v/~)l/2(1/2fl) in r e a l  c o n -  
c o o r d i n a t e s ,  i .e . ,  it e x c e e d s  the  t h i c k n e s s  of the  h y d r o d y n a m i c a l  l a y e r  by a l a r g e  f a c t o r  f o r  s m a l l  ~. 

2. Le t  a <  1, i . e . ,  fl< 0. Denoting t =--f i t ,  we ob ta in  a s y s t e m  s i m i l a r  to  (1.11), only fl is  r e p l a c e d  by ~f l  
in the  e x p r e s s i o n  fo r  q (t). C a r r y i n g  out the  s a m e  p r o c e d u r e  tha t  we did in the c a s e  a > 1, we find the  a s y m p t o t e  
Yt(~). It  wi l l  be  e x p r e s s e d  s i m i l a r l y  to  (1.12), i . e . ,  yl(~) N e x p ( - f l ~ ) .  Subst i tu t ing the  1aider into (1.7), we ob-  
t a in  tha t  S(~) does  not tend  to  z e r o  as  ~ -~o .  Thus  in the  e a s e  in which  the  fluid is r o t a t i ng  m o r e  r a p i d l y  at  in -  
f ini ty than  the  disk,  t h e r e  is  no s t a t i o n a r y  so lu t ion .  P h y s i c a l l y ,  th is  is  exp la ined  by the  fac t  tha t  unde r  t h e s e  
condi t ions  the  f luid f lows away  f r o m  the  d i sk  and hea t  d i f fus ion is  in no way r e s t r i c t e d .  

The  e x p r e s s i o n  f o r  q is  found by d i r e c t  i n t e g r a t i o n  of the  second  equa t ion  of (1.4) 

c v (To-- Too)~ ( ~ ) ~ ) [exp (a ~ hdu) N (u, exp ( - - ~ h d u ) d u  du, (1.16, 
g ~ g 

whe re  

0 
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We obtain 

q = O(exp(--2~)) 

f r o m  (1.15) and (1.16). It is a lso  evident f r o m  (1.16) that t he r e  exis ts  a solution for  q sa t i s fying the boundary 
conditions (1.6) only fo r  fl > 0, even if one neglects  diss ipat ion,  i .e. ,  se ts  N(~)= 0. 

2. The flow between two coaxial  infinite ro ta t ing  disks s i tuated at a dis tance I f r o m  each other  is d i s -  
cussed .  The t e m p e r a t u r e s  and angular  veloci t ies  of the disks are T1, ~1 and T2, D2. The flow between infinite 
coaxial  pa r a l l e l  disks has been inves t iga ted  in [2, 5, 11]. The p r o b l e m  can be reduced,  just  as in the case  of a 
single disk,  to a s y s t e m  of o rd ina ry  di f ferent ia l  equations.  The di f ference  cons i s t s  of the fact  that  the p r e s s u r e  
is sought in the f o r m  p = P(z) + (1/2)12 r 2 instead of (1.2), where  A is found f rom the boundary conditions.  Thus 
it has been  shown in [5] that  if  the ro ta t ional  ve loci t ies  of the disks a r e  s i m i l a r  ;~ = ~ I  +~22)/2. The boundary 
conditions (1.6) a r e  r ep laced  by 

S(O)= S(1)= q(1)= O, q(O)=(cv/vQ)(T: -- r~). 

If h and g a r e  known, the functions S and q a r e  de te rmined  f rom the re la t ionships  

i(! i(! ] S(~) = y :  ~ + 

! du 0 Yi 

where  Yl is some  fundamental  solution of the homogeneous Eq. (1.8); 

Cv T~) 1 -  g q (~)  = ~ ( r l  - -  t~  - -  

0 V 

where  
! 

,1 =  exp S hdu) o; 
0 

! u 

I ,=yexp((~yhdu)yN(u)exp(--(~yhdu)dudu. 
0 0 

After  the t e m p e r a t u r e  d is t r ibut ion is found, one can calcula te  the heat  t r a n s f e r  f rom any pai~ of the disk.  

The author  is g ra te fu l  to B. A. Lugovtsov for  support ing this  r e s e a r c h .  
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F I L M  C O N D E N S A T I O N  OF A M O V I N G  V A P O R  

ON A H O R I Z O N T A L  C Y L I N D E R  

I .  I .  G o g o n i n ,  A.  R .  D o r o k h o v ,  
a n d  V.  I .  S o s u n o v  

UDC 536.24 : 536.423 

The computation of heat t r ans fe r  during film condensation of a moving vapor on a horizontal  cyl inder  is 
possible at this t ime for a whole se r ies  of simplifying hypotheses.  The problem of an experimental  conf i rma-  
tion of the dependences proposed [1-3] in o rde r  to refine fur ther  the mechanism of moving vapor  condensation 
is urgent.  There  is a l imited quantity of data in the l i te ra ture  which could be used for this purpose [4-8]. Thei r  
significant d i screpancy  under  comparable  conditions as well as the lack of sys temat ic  measuremen t s  on such 
important  dependences for  analysis as the dependence of the coefficient of heat t r ansmi s s ion  on the t e m p e r a -  
tare  head, the condensation p r e s su re ,  and the geometr ic  pa r ame te r s  should be noted. 

This paper  is a continuation of investigations on the condensation of the moving vapor  F r e o n - 2 !  (F-21, 
CHFCI2) on horizontal  cyl inders .  The tes ts  were  conducted on a tes t  stand by the methodology of [8]. 

The tes ts  were  conducted on horizontal ly a r ranged  nickel tubes of D = 16 m m  outer  d iamete r  :and L=  580 
m m  length, placed in a condenser  with 400-ram inner diameter .  The wall t empera tu re  t w of the experimental  
sections was measured  by six thermocouples  calked around the p e r i m e t e r  of the tube at the middle of the sec -  
tion, and whose readings were  averaged.  The saturated vapor  t empera tu re  t" was measured  by a thermocouple 
and was determined by means of the O - T  data for  F r e o n - 2 1 b y m e a s u r i n g  the sa turated vapor  p r e s s u r e  with a 
s tandard manome te r  of the c lass  0.35. 

The heat flux q on the outer  surface  of the experimental  sect ion was determined by the change inenthalpy 
of the cooling water  which came in from a constant - level  tank. The change in t empera tu re  head At =t" - - tw was 
achieved by adding hot water  to the cooling water .  

The ranges  ofvar ia t ion  of the main  condensation pa rame te r s  were  q = (3-150) - 103 W/m 2, At = 1-30~ t" = 
60-90~ The accuracy  of determining the heat t r ansmis s ion  coefficient ~ =q/At at At->2~ is es t imated at 1070. 

In the tes ts  on moving vapor condensation the experimental  sections were  located in a channel whose 
geomet ry  could be changed. The schemes  for  locating the experimental  sections which were  real ized in the 
exper iment  are  shown in Fig. l a - c .  In the ease  i l lustrated in Fig. la ,  the experimental  sect ion 2 is 170 mm 
f rom the vapor input to the channel. The spacing between the channel walls 1 was b = 26, 46, and 6~ m m  in the 
different tes t  se r i es .  The vapor was smoothly introduced into the channel and three  damper  grids 4 were also 
set up. The spacing between the channel walls was 66 m m  for  the disposition of the experimental  sections 
according to the scheme shown in Fig. lb, and the tests  were conducted ser ia l ly  in the 1, 4 and 9 tubes of a 
t en-se t  unstaggered bundle. In the case  shown in Fig. lc ,  the spacing between the walls was 26 mm and the 
inser ts  3 simulating a checkerboard  bundle with s l /D = 1.87, s2 /D = 0.81 were additionally mounted in the chan- 
nel. The tes ts  were  conducted in each tube of the bundle without feeding cooling water  to those located above. 

The experiment showed that despite the great  d ivers i ty  in conditions under which the test  was conducted, the 
magnitude of the heat t r ansmiss ion  coefficient had the same value upon re fe r r ing  the vapor  velocity to the chan- 
nel through-sect ion.  Pa r t  of the tes t  resul ts  is presented in Fig. 2 for  the vapor motion velocities w=0.57 m /  
see {points 1-3) and w = 1.1 m / s e e  {points 4 and 5) at t" = 60~ Points 1 and 4 cor respond to the section a r -  
rangement  shown in Fig. la ,  2 to Fig. lb, and 3, 5 to Fig. lc .  Tests  conducted on different tubes of the bundle 
along its height at the same vapor velocity and saturat ion t empera tu re  showed that the coefficient of heat t r ans -  
miss ion  has the identical value (within the l imits of experimental  e r ro r ) .  
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