HEAT EXCHANGE BETWEEN ROTATING DISKS

V. V. Nikulin UDC 536.24,01

The generalization of [1] in this paper is similar to the generalization made in [2] with respect to [3}] with-
out the energy equation taken into account. Investigation of the ordinary differential equations derived in the
linear approximation for the case of heat transfer of a rotating disk into an unbounded rotating fluid has shown
that the ratic of the thickness of the thermal boundary layer to the thickness of the hydrodynamical one for a
fixed Prandtl number depends only on the ratio of the angular velocities of the fluid and the disk and tends to
infinity when they are equal, Thus rotating systems provide an example of the kind of motion in which different
physical mechanisms are responsible for the formation of the thermal and hydrodynamical boundary layers.
Thus the thermal layer is produced as a result of the fact that the flow of fluid from infinity to the disk pre-
vents unlimited heat diffusion, i.e., a limit to diffusion occurs due to convection, The hydrodynamical layer
is a layer of the Ekman type [4] and is produced on account of a balance of Coriolis and drag forces.

1. A half-space filled with a viscous incompressible fluid and bounded by an infinite disk is discussed.
The fluid at an infinite distance from the disk has a temperature T,, and is rotating with angular velocity .
The disk has a temperature T, and is rotating with angular velocity afl.

The continuity, Navier—Stokes, and energy equations in a cylindrical coordinate system with axis coin-
ciding with the rotation axis and with the axial symmetry of the flow taken into account (we assume a fluid den-
sity p =1) have the form
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where v is the kinematic viscosity, » is the thermal conductivity coefficient, cyis the specific heat of the fluid
at constant volume, and e;; is the deformation rate tensor; v, », and cy are assumed to be constant, and (uwv)
are the radial, axial, and rotational components of the velocity in the cylindrical coordinate system (rz ).

Following [1, 2], we will seek a solution of (1,1) in the form
vir = Qg(l), w =(v)Y2R(T), u/r = —(Q/2)dh/dL,
b = p(&) (112,
T = (vQley)(E25(D) = ¢(8) + T,
z =W/ Q)Y r =(v/Q)VE,

(1.2)

Then the system (1.1) decomposes into two equations, the first of which is solved independently of the
second:
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with the boundary conditions
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{h (0)=r(0)=0, g(0)=a a [=0, (L.5)

B -0, g—1 as [ o0;
{S(O)=o,q(0)=%('ro-—n) at {=0, (1.6)

§-0, g—0 as [ -» oo
{o=v/% is the Prandtl number). '

The authors of [2, 5~7] investigated Eqs. (1.3) with the conditions (1.5). If now the solution of the system
(1.3) is known, it is possible to investigate Eqs, (1.4) according to [1]. We note that the heat transfer from a
rotating disk into a nonrotating fluid has been generalized in [8] to the case of compressibility and a linear
temperature dependence of the viscosity. Nonsteady heat transfer in the case in which the temperature of the
disk was varied instantaneously has been discussed in [9].

Let us consider the case in which the rotational velocity of the disk differs little from the rotational
velocity of the fluid at infinite distance from the disk, i.e., |1—a| < 1. Then as follows from [4, 6], Egs. (1.3)
are linearized, and their solution, which satisfies the boundary conditions (1.5), has the form

8(8)=1 o — t)cos(L)exp(— ),
A(g)= —(a — 1)1 — sin({)exp(— {)— cos(Llexp(— I)).

It follows from this that the thickness of the hydrodynamical boundary layer does not depend on « and is
a quantity ~1 with respect to the variable ¢, i.e., ~(v/§2)1/ % in real coordinates,

Let us estimate the size of the thermal boundary layer. Using the results of [1], the solution of the first
equation from (1.4) satisfying (1.6) can be written in the form

l(j%)[?y;(j«u(u)y,u)du)(n] . \

S =y ! ~ Y:(S M (u) y, (u) du ) dt}evp]——ﬁ(; +cos (D) exp(— 1), @D
i\

,........_v
I §

where
p=22"1 (az_ D m (H)=—o (g" + é-h”’) exp (— T(: shd'g) =
= — 2¢ (& — 1)2exp{— 2% 4 B (L + cos (C) exp (— NN,
and y,(¢) is some fundamental solution of the homogeneous equation

i + (2o —ZE)y =0, - 1.8)

which is obtained from the first equation of (1.4) by the substitution y = S () exp (—- -g- Shdé) : furthermore, yy

satisfies the condition
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Having substituted expressions for h' and h into (1.8), we obtain

Y1+ [— % — 2B(3 — B) sin (¥) exp (— L) — B2 exp (— 20) (4 + sin (28)) 4282 cos (L) exp (— L)1y, = 0. (1.10)
We will find the asymptote of y; ) from (1.10) for the investigation of the function S(¢) at large &,

Sl

< oo, (1.9)

1. Leta>1,i.e., > 0. Let us denote t=3¢ and dyi/dt =x; then we obtain from (1,10) the system
dyJdt = z, deldt = @)y, ' (1.11)
where
o(l)=1+ evp(— F) (1 -+ sin ( )) B (3 B) sin(—fp—) exp(— -;—) —'2 cos (—%—) exp(— —B—)

It is possible to asymptotically integrate the system (1,11) by means of reducing it to the L-diagonal form [10].
Asymptotic integration is possible in the region ty<t< %, in which ¢ )=k > 0 is valid. Assuming 8= 1/10 and
setting t;=28In (1/B), we obtain that the inequality ¢ {) =k > 0 is satisfied for t €[tyo),
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Let us take as the fundamental solution of (1.11) on [tg)

{ ot
y1 = (v -+ m)exp (SVE du), z={y—m) PXD(\ Ve du),v : (1.12)
to [
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where v and 7 satisfy the system of integral equations

v=1+S%,(Y—ﬂ)d%
¢

[}

, P {1.13)
n=§§;"(—p(v—n) exp -—2§V<Pdu du.
fo u /

One can check that the y; and x so determined satisfy the system (1.11). As has been shown in [10], Eqs, (1.13)
have a unique continuous bounded solution on {t;*). Then we obtain from (1,13)

y=1+0(Fexp(— 7)), n=0@ exp(—20)

We note that y—1 and 7 — 0 for any { from [t°) as 8— 0. And thus with account taken of the fact that Yo=1+
£(t), where [£¢t)] < (7/B)exp(—t/B), we obtain from (1.12) an estimate y; ) for sufficiently small g and t €[tpo ),

Now we estimate yy () on the interval [0t;). It follows from the boundedness of v and  on [t) for §= 1/10
and from (1.12) that y;{&;) and yy¢,) are also bounded and y, ty) > 0, yi ;) > 0 for sufficiently small 8. Then
we have for y, (t)

to 1g

Uy () = 11 () + 43 (80) (¢ — %) + § dus [ o (w) () e, (1.14)

Let us denote

to io

8 ='S'du{'§ | @ ()| du.

0
For sufficiently small 8, 0<1 is satisfied; moreover, 6— 0 as §—0. Then we obtain from (1,14)

lyi (%) |6+ I y; {t0) ! to
t) — ) | < .
S () — )< %
Thus for sufficiently small 8 the quantity y;{) > 0 and is bounded on [0t,], since y, ) —1 as 8 —~0, Due to this

and the asymptotic Eq. (1.12), condition (1.9) is satisfied.

Using (1.12) and the expression for ¢ ), we obtain from (1.7) the asymptote of S(¢) for £ > ¢, where
&o=ty/B=2In(1/B),

S(E) = O(B” exp (— 2B0)). (1.15)

From this it follows that the thickness of the thermal boundary layer is ~1/28, or ~(v/52)1/ 2(1/2B) in real con-
coordinates, i.e,, it exceeds the thickness of the hydrodynamical layer by a large factor for small 8.

2, Let o<1, i.e., §<0. Denoting t=—8E, we obtain a system similar to (1.11), only 8 is replaced by ~p3
in the expression for ¢ (t). Carrying out the same procedure that we did in the case &> 1, we find the asymptote
yi €). Tt will be expressed similarly to (1.12), i.e., vy ) ~exp(—B¢). Substituting the latter into (1.7), we ob~
tain that S() does not tend to zero as £ —=, Thus in the case in which the fluid is rotating more rapidly at in-
finity than the disk, there is no stationary solution. Physically, this is explained by the fact that under these
conditions the fluid flows away from the disk and heat diffusion is in no way restricted,.

The expression for q is found by direct integration of the second equation of (1.4)

- f_(‘;(ﬂ;_lfﬁg exp (ajhczu) du + %é exp (05 hdu) du — Eexp (o | au) Lj N (u)exp (— o | hdu) du} du, (1.16)

where

o

Jy = s‘ exp (0‘ 5. hdu) du;

0

Jo = 3? [exp (G 5. hdu) §‘L N (u) exp (—— g 5. hdu) du] du;,
0 0
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N(© = — (45 + 30k'%) = — 4 (s +A2 pesin® () exp (— 2@)).
We obtain
g = Olexp(—2B7))

from (1.15) and (1.16). Tt is also evident from (1.16) that there exists a solution for q satisfying the boundary
conditions (1.6) only for 8> 0, even if one neglects dissipation, i.e., sets N{¢) =0,

2. The flow between two coaxial infinite rotating disks situated at a distance I from each other is dis-
cussed, The temperatures and angular velocities of the disks are Ty, 2, and T,, Q,. The flow betweeninfinite
coaxial parallel disks has been investigated in [2, 5, 11]. The problem can be reduced, just as in the case of a
single disk, to a system of ordinary differential equations. The difference consists of the fact that the pressure
is sought in the form p=P(z) + 1/ 2)a% r? instead of (1.2), where A is found from the boundary conditions, Thus
it has been shown in [5] that if the rotational velocities of the disks are similar A= (Q, +$22)/ 2, The boundary
conditions (1.6) are replaced by

S(0)= SO = g(l)= 0, g(0)=(cyNQNTy — T).

If h and g are known, the functions S and ¢ are determined from the relationships

—_— ) ( )%( M (u) yy (u) du du)
Y1 /
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0 N
where y; is some fundamental solution of the homogeneous Eq. (1.8);

\ exp ( (hdu) du]
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N () exp( 5 kdu) du) du,

where

I, = Slexp (0 jhdu) du
§
I,= fexp (0 Shdu) f N (u) exp (— o X hdu) dudu.
B 6

After the temperature distribution is found, one can calculate the heat transfer from any part of the disk.

The author is grateful to B, A, Lugovtsov for supporting this research.
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FILM CONDENSATION OF A MOVING VAPOR
ON A HORIZONTAL CYLINDER

I. I. Gogonin, A, R. Dorokhov, UDC 536.24:536,423
and V, I, Sosunov

The computation of heat transfer during film condensation of a moving vapor on a horizontal cylinder is
possible at this time for a whole series of simplifying hypotheses. The problem of an experimental confirma-
tion of the dependences proposed [1-3] in order to refine further the mechanism of moving vapor condensation
is urgent. There is a limited quantity of data in the literature which could be used for this purpose [4-8], Their
significant discrepancy under comparable conditions ag well as the lack of systematic measurements on such
important dependences for analysis as the dependence of the coefficient of heat transmission on the tempera~
ture head, the condensation pressure, and the geometric parameters should be noted.

This paper is 2 continuation of investigations on the condensation of the moving vapor Freon-21 (F-21,
CHFCl,) on horizontal cylinders. The tests were conducted on a test stand by the methodology of [8].

The tests were conducted on horizontally arranged nickel tubes of D =16 mm outer diameter and L= 580
mra length, placed in a condenser with 400-mm inner diameter. The wall temperature ty, of the experimental
sections was measured by six thermocouples calked around the perimeter of the tube at the middle of the sec-
tion, and whose readings were averaged. The saturated vapor temperature t" was measured by a thermocouple
and was determined by means of the p—T data for Freon-21 by measuring the saturated vapor pressure with a
standard manometer of the class 0.35.

The heat flux q on the outer surface of the experimental section was determined by the change inenthalpy
of the cooling water which came in from a constant-level tank, The change in temperature head At =t"~—iy was
achieved by adding hot water to the cooling water.

The ranges of variation of the main condensation parameters were g = (3-150) - 10° W/m?, At=1-30°C, t" =
60~90°C. The accuracy of determining the heat transmission coefficient a=gq/At at At=2°C is estimated at 10%.

In the tests on moving vapor condens=ation the experimental sections were located in a channel whose
geometry could be changed. The schemes for locating the experimental sections which were realized in the
experiment are shown in Fig. la-c. Inthe case illustrated in Fig, 1a, the experimental section 2 is 170 mm
from the vapor input to the channel. The spacing beiween the channel walls 1 was b=26, 46, and 66 mm in the
different test series. The vapor was smoothly introduced into the channel and three damper grids 4 werealso
set up. The spacing between the channel walls was 66 mm for the disposition of the experimental sections
according to the scheme shown in Fig, 1b, and the tests were conducted serially in the 1, 4 and 9 tubes of a
ten-set unstaggered bundle. In the case shown in Fig, lc, the spacing between the walls was 26 mm and the
inserts 3 simulating a checkerboard bundle with s,/D=1.87, s,/D=0.81 were additionally mounted in the chan-
nel, The tests were conducted in each tube of the bundle without feeding cooling water to those located above.

The experiment showed that despite the great diversity in conditions under which the test was conducted, the
magnitude of the heat transmission coefficient had the same value upon referring the vapor veloeity to the chan-
nel through~section. Part of the test results is presented in Fig. 2 for the vapor motion velocities w=0.57 m/
sec (points 1-3) and w=1,1 m/sec (points 4 and 5) at t"=60°C. Points 1 and 4 correspond to the section ar-
rangement shown in Fig. 1la, 2 to Fig. 1b, and 3, 5 to Fig. lc. Tests conducted on different tubes of the bundle
along its height at the same vapor velocity and saturation temperature showed that the coefficient of heat trans-
mission has the identical value (within the limits of experimental error),
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